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1. MOTIVATION

Our goal Is to perform anomaly detection In a
unigque setting, removing the reliance on data
and/or temporal assumptions.

Our setting is largely unaddressed in vision-based
anomaly detection, but appears often in practice
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First-time data: Personalized results: Database sifting:
New systems and Unique testing Exploring a single
environments distribution data chunk

Our setting involves two challenging restrictions

(1) Operate relative to the (2) Score independent of
test sequence ordering
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2. APPROACH & KEY INSIGHTS

Taking a discriminative, permutation-based
approach allows us to operate In this setting

Insight #1: Density ratios directly estimate
discriminability, minimizing distribution assumptions
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Insight #2: Permutation testing removes temporal
assumptions, avoiding false positives
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4. SYSTEM OVERVIEW
The framework from video to anomalies

A. Collect B. Compute C. For each shuffle and split, D. Aggregate
video event descriptors train classifiers and score anomaly scores
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Replace with any set
of features

* No training data required
 Anomaly scores are independent of ordering

5. RESULTS
This method performs as well as other methods
that require a training set

Avenue Dataset UMN Dataset
Similar frame- and pixel-based ROC, Higher AUC on all but 1 scene
without using the training set Example: Scene 7
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6. FUTURE WORK

Context-driven improvements could come
from feature learning, active learning, and data

player
>
movement

Feature learning: Active learning: Datasets:
align with human incorporating developing larger,
notion of feedback from more realistic
abnormality humans benchmarks
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