# ICML @ NYC Anomaly Detection Workshop

# **Problem:** Most anomaly detection algorithms are at the mercy of false positives in feature space

Illumination

Camera shake

Causes of false alarms in anomaly detection:

- Little supervision
- Humans ignore specific changes
- Relevant features are unknown in advance

## **Objective:** Learn a feature mapping that reduces false positives by learning features that humans are uninterested in



Research supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program

# **Informative Features for Anomaly Detection** Allison Del Giorno, J. Andrew Bagnell, Martial Hebert Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15232 adelgior@cs.cmu.edu

# **Problem setup:** Sets of normal data for training



### Method: A generalized eigenvalue problem learns invariance from within-set variance while preserving information across sets

#### Invariance: reduce *intra*set variance

| invariance. reduce intruset varia                                                                                               | a     |
|---------------------------------------------------------------------------------------------------------------------------------|-------|
| $\arg\min_{g} L_{g}^{S}(\mathcal{X}) = \sum_{m} \sum_{x,y \in \mathcal{X}^{m}}   g(x) - g(y)  _{\mathcal{X}}$                   | y     |
| Fidelity: preserve variance acro.                                                                                               | S     |
| $\arg\max_{g} L_{g}^{A}(\mathcal{X}) = \sum_{x,y \in \mathcal{X}}   g(x) - g(y)  _{2}^{2}$                                      |       |
| $rgmin_{g,\lambda} L_g^S(\mathcal{X}) - \lambda L_g^A$                                                                          |       |
| $g(x) = v^T x$                                                                                                                  | ľ     |
| Final objective function:                                                                                                       |       |
| Generalized eigenvalue problem                                                                                                  |       |
| $\arg\min_{v} \frac{v^T \bar{C} v}{v^T C v}$                                                                                    |       |
| $\mathcal{X}^1$ $\mathcal{X}^2$ $\mathcal{X}^3$ $\mathcal{X}^4$ $\mathcal{X}^5$ $\mathcal{X}^6$ $\mathcal{X}^7$ $\mathcal{X}^8$ |       |
| 1 3 4 5 6 7 v                                                                                                                   | 0282  |
|                                                                                                                                 | 0141  |
| 3 4 5 6 7 8 <u>Ar 60001</u> Ar 60001 Ar 60                                                                                      | 00924 |
|                                                                                                                                 | 00664 |
|                                                                                                                                 | 00514 |









 $) \|_{2}^{2}$ 

ss sets:





## **Results:** Informative features improve performance using existing anomaly detection algorithms





### **Future work includes:**

- Human in-the-loop training
- Regularization for anomaly detection systems
- Nonlinear generalization
- Other ML problems (denoising, classification)
- invariance sparse or easy to synthesize



# **Carnegie Mellon University**