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Problem: Most anomaly detection algorithms are
at the mercy of false positives in feature space
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Causes of false alarms in anomaly detection:
e Little supervision
* Humans ignhore specific changes

e Relevant features are unknown in advance
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Objective: Learn a feature mapping that reduces
false positives by learning features that humans

are uninterested in

Challenge I:
Training data may not tell the whole story*

*Or there may be no training data at all
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Challenge 3:
Humans and algorithms can easily disagree
on the definition of anomalies

Objective:
ver Learn human-
movement defi ned

mm Invariances

algorithms to

adelglior@cs.cmu.edu

Problem setup: Sets of normal data for training

Training Testing
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Method: A generalized eigenvalue problem learns
invariance from within-set variance while
preserving information across sets

Invariance: reduce intraset variance
argmin L3 (X) = > > lg(z) — g(v)l3
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Results: Informative features improve performance
using existing anomaly detection algorithms
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Original features: frame-wise anomaly rating
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Informative features: frame-wise anomaly rating

g(X")| i | j

200 400 600 800 1000 1200 1400

Ground truth

400 600

| Normzfll:. Abnormal: Normal:
little activity vertical motion horizontal motion

Future work includes:

* Human in-the-loop training

* Regularization for anomaly detection systems

* Nonlinear generalization

 Other ML problems (denoising, classification)
- invariance sparse or easy to synthesize
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